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The flow between parallel walls driven by the time-periodic oscillation of one of
the walls is investigated. The flow is characterized by a non-dimensional amplitude
∆ and a Reynolds number R. At small values of the Reynolds number the flow is
synchronous with the wall motion and is stable. If the amplitude of oscillation is held
fixed and the Reynolds number is increased there is a symmetry-breaking bifurcation
at a finite value of R. When R is further increased, additional bifurcations take place,
but the structure which develops, essentially chaotic flow resulting from a Feigenbaum
cascade or a quasi-periodic flow, depends on the amplitude of oscillation. The flow in
the different regimes is investigated by a combination of asymptotic and numerical
methods. In the small-amplitude high-Reynolds-number limit we show that the flow
structure develops on two time scales with chaos occurring on the longer time scale.
The chaos in that case is shown to be associated with the unsteady breakdown of a
steady streaming flow. The chaotic flows which we describe are of particular interest
because they correspond to Navier–Stokes solutions of stagnation-point form. These
flows are relevant to a wide variety of flows of practical importance.

1. Introduction
Our concern is with the flow in a squeeze bearing driven by the time-dependent

motion of one of the walls bounding the fluid. We restrict our attention to the case
when the wall moves periodically in time; this simplifies the stability and bifurcation
problems associated with the flow since Floquet theory gives a natural definition of
instability for the flow. We note that, except for slowly varying flows, the concept of
instability for an unsteady flow is not well understood.

The flow which we investigate depends on two spatial variables and time. How-
ever, the flow is a Navier–Stokes solution of the stagnation-point type so that one
spatial variable may be removed from the problem. The flow is characterized by
the Reynolds number R and ∆, the non-dimensional wall oscillation amplitude. The
major simplification of our work is that we assume that the walls bounding the fluid
are infinite; this differs from real squeeze bearing flows which of course must occur in
a finite geometry. We do not address here the question of how the flow we calculate
adjusts in order to accommodate sidewall boundary conditions.

In this paper we will investigate the possibility of instability/chaos in flows which
retain the assumed stagnation-point structure. Therefore, vortex or wave disturbances
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which might also lead to the breakdown of the unique stable flow which occurs for
small enough Reynolds numbers are excluded from our analysis.

In fact, as kindly pointed out to the authors by a referee, Secomb (1978) has
considered a closely related problem of the flow in a channel where the walls move
in a prescribed manner. His analysis concerns symmetric flows in the limiting case of
high- or low-frequency oscillations of the wall. In addition he gives results for arbitrary
frequency and small-amplitude oscillations. Thus the overlap with the present paper
is slight but we shall of course refer to his paper when our analysis can be related to
his work.

Another investigation relevant to the present study is that of Stuart et al. (1990) who
considered the stability of the flow in a squeeze bearing when the distance between the
walls varies in time. They used lubrication theory and were able to find an asymptotic
solution to the equations governing the growth of Tollmien–Schlichting waves in what
turned out to be Poiseuille flow with amplitude varying slowly in time and space.
However the method used was unable to describe time-periodic flows. The present in-
vestigation began as an attempt to understand the instability of time-periodic squeeze
bearing flows to wave or vortex disturbances. We shall see that in fact the flow may
break down chaotically as a result of an inherent instability associated with the time
dependence. The work which we will carry out on squeeze bearing flows is directly
relevant to lubrication technology. We will be able to identify the size of external
vibrations which a squeeze bearing flow can support before it breaks down and be-
comes chaotic. That is of some importance because the load bearing properties change
significantly when transition occurs. For a discussion of this point see Gross (1980).

In the small Reynolds number limit the flow is unique and stable and may be found
using a small Reynolds number expansion. At leading order the flow corresponds
to plane Poiseuille flow in the horizontal direction with local amplitude varying
periodically in time. At higher Reynolds numbers we find that the flow loses stability
to a synchronous symmetry-breaking perturbation which bifurcates supercritically
from the basic state. This flow then remains stable for a range of Reynolds numbers
before it loses stability to a more complicated type of mode. This breakdown depends
on the size of ∆, the oscillation amplitude. For sufficiently large ∆ we find that the
flow follows the Feigenbaum route to chaos whereas at lower ∆ the flow becomes
quasi-periodic before chaos occurs. Our results for small ∆ suggest the possibility
of a large-R structure capable of supporting quasi-periodic and chaotic flows; that
structure is relevant to the case when thin Stokes layers develop at each wall. At
an intermediate value of the oscillation amplitude ∆ we typically find that the flow
initially becomes quasi-periodic but then locks onto a periodic solution with period
4π. It then is found to become chaotic. The results obtained for small ∆ suggest that a
new structure emerges in the limit ∆→ 0, R →∞. This limit is explored and we show
that quasi-periodicity at small ∆ occurs as a result of a Hopf bifurcation from a steady
streaming flow driven by the wall motion. Subsequently we find the quasi-periodic
flow itself breaks down and becomes chaotic as a result of a Feigenbaum cascade.

The procedure adopted in the rest of the paper is as follows. In § 2 we write
down the partial differential system which describes time-dependent flows in squeeze
bearings and discuss the basic flow which exists in the absence of any bifurcations.
In § 3 the symmetry-breaking bifurcation to a flow synchronous with the basic state
is investigated. In § 4 we discuss the subsequent breakdown of the symmetry-breaking
flow as a result of period-doubling or quasi-periodic bifurcations. In § 5 the simplified
structure which occurs in the limit ∆→ 0, ∆2R = O (1) is described, and finally in § 6
we draw some conclusions.
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2. Formulation of the problem and the basic periodic flow
We consider the flow of a viscous fluid of kinematic viscosity ν and density ρ,

between the rigid walls given by y = 0, 2bH(nt∗), with t∗ denoting time. The Reynolds
number R is defined by

R =
nb2

ν
. (2.1)

If we introduce the variables η and t, given by

η = {y/(bH)− 1} , t = nt∗, (2.2)

then, following Stuart et al. (1990), we find that the two-dimensional stream function
for the flow may be written in the form

Ψ = nbx(V (η, t)− Ḣ). (2.3)

The function V is then seen to satisfy

Vηηt =LV +NV , (2.4)

V (±1, t) = ∓Ḣ, Vη (±1, t) = 0.

Here the linear and nonlinear operators L and N, respectively, are defined by

LV =
1

H
{2ḢVηη + ηḢVηηη}+

1

RH2
Vηηηη, (2.5)

NV =
1

H

(
VVηηη − VηVηη) . (2.6)

It is then apparent that the periodic solution of (2.4) associated with a basic periodic
state has V as an odd function of η. We will restrict our analysis to the case when
H is a periodic function of time. In addition we must impose an initial condition at
t = 0 if we address the initial value problem, and a periodicity condition in t when
the equilibrium state is considered. In the small Reynolds number limit there is a
unique stable solution of (2.4), which reduces, at any instant in time, to Poiseuille
flow at leading order. Henceforth we shall refer to this periodic state as VB (η, t) and
in the low Reynolds number limit it follows directly from (2.4) that

VB =
Ḣ

2

{
η3 − 3η

}
+ O (R) + · · · . (2.7)

Thus we see that the flow is locally of plane Poiseuille form in the horizontal direction,
with its direction and strength varying periodically in time. The stability analysis of
Stuart et al. (1990) was concerned with the possible instability of (2.7) to Tollmien–
Schlichting waves. Here we restrict our attention to the stability of VB to simpler
disturbances corresponding to the linearization of (2.4) about V = VB , for example.
In order to calculate VB we must in general solve (2.4) numerically. Since much of
our discussion will depend on the scheme we use we shall give the most essential
details of it here.

A point of some importance to be noted is that a unidirectional flow driven by a
pressure gradient in the x-direction can be superimposed on the flow discussed above
without altering the equations we have derived. The unidirectional flow is determined
by an equation involving the imposed pressure gradient and the stagnation-point
flow; see for example Secomb (1978).

We determine VB by solving (2.4) subject to an initial condition chosen to be
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consistent with the boundary conditions. As can be seen, the problem is parabolic
in time and a suitable finite difference scheme is provided by the Crank–Nicholson
method. Dividing the domain −1 6 η 6 1 into N equal intervals (variable grids are
easily incorporated) of length h = 2/N, so that η1 = −1 and ηN+1 = 1, the objective
is to obtain a numerical approximation of V (ηi, tm) = Vm

i where tm = m∆t, m =
0, 1, 2, . . . , and ∆t is the time step.

Spatial discretizations are done by central differences in the usual way and all
derivatives are approximated with O

(
h2
)

accuracy. We will use the notation DjV m
i

to mean the central difference approximation of ∂jV/∂ηj at η = ηi, t = tm. For
consistency the Neumann boundary conditions are treated to O

(
h2
)

by extend-
ing the computational domain to include the fictitious points η0 = −1 − h and
ηN+2 = 1 + h with the corresponding dependent values Vm

0 and Vm
N+2. The no-slip

conditions Vη (±1, t) = 0 give Vm
0 = Vm

2 and Vm
N+2 = Vm

N . Next, writing second-order
finite difference equations at the points η2 and ηN (see below) yields relations involv-
ing Vm

0 and Vm
N+2 which can be eliminated from the equations just found. Spatial

discretizations are seen, then, to be of second-order accuracy throughout.
The advantage of using a semi-implicit method such as the Crank–Nicholson

scheme rather than a fully implicit one, is that it achieves second-order accuracy in
time and space for direct application to linear problems. The discretization of (2.4)
takes the form

1

∆t

(
D2Vm+1

i − D2Vm
i

)
= 1

2

(LVm+1
i +LVm

i

)
+NVm

i , (2.8)

where the right-hand side of (2.8) is the finite-difference approximation of the opera-
tors defined above. We note that the nonlinear terms are treated explicitly at this stage
and an iteration procedure is described later. The operator L has time-dependent
coefficients depending on the forcing function H (t) but it is easy to show that the
discretization of the linear part is O

(
(∆t)2

)
accurate.

Equation (2.8) holds for i = 2, . . . , N, and together with the boundary conditions
provides (N + 1) equations for the unknown vector V m+1 = (Vm+1

1 , . . . , V m+1
N+1)T at time

tm+1 given information at time tm. In matrix form the system can be written as

AV m+1 = F 1 (V m) + F 2 (V m) , (2.9)

where A is an (N + 1)× (N + 1) pentadiagonal matrix. The right-hand side is written
in two parts: the vector F 1 comes from linear terms of the semi-implicit scheme, and
the vector F 2 contains all the nonlinearities. The inversion of A is easily accomplished
by an LU factorization with recursive back substitution. The matrix is diagonally
dominant as h decreases and so the inversion is stable.

To maintain second-order accuracy throughout the discretization, a fixed-point
iteration is performed to take care of the explicit representation of the nonlinearities
in (2.7). This can be achieved by centring the nonlinearities at tm+1/2. The following

iteration can then used: at the level k we define U k = V m+1
k and proceed to level k+ 1

by solving

AU k+1 = F 1 (V m) + 1
2
F 2 (V m) + 1

2
F 2 (U k) , (2.10)

where U 0 = V m+1 obtained by solution of (2.9) at the time level tm+1. The iteration
(2.10) updates the nonlinear part of the equation until a convergence criterion is
reached. It was found, through numerical experiments, that for the time steps used a
single iteration is usually sufficient. We note also that inversion of A in the iteration
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procedure is not costly since the LU factorization of A is already known from the
k = 0 level.

In view of the odd-parity properties of (2.4) about η = 0 the function VB may be
assumed to be odd about η = 0, and calculations need only be carried out over one
half of the vertical range of interest. We restrict our discussion throughout this paper
to the case when

H = 1 + ∆ cos 2t, 0 < ∆ < 1, (2.11)

and note that it is sufficiently general to consider a flow of period π since flows of
other periods simply correspond to period-π flows at different values of R.

The calculations to determine VB were carried out on the half-range 0 6 η 6 1
and symmetry conditions imposed. In view of the symmetry of VB we took VB = 0 at
t = 0 and marched forward in time until a periodic state was obtained. Figure 1 shows
some calculations performed to compute VBηη (−1, t) for the cases ∆ = 0.25, 0.45, 0.65
and R = 0, 5, 25. Note that in each of these figures the amplitudes of the oscillations
increase with R. We see that our time marching solution of the initial value problem
approaches a periodic state, i.e. VB (η, t), for a range of values of R. At higher values
of R this is not the case and we shall return to that situation in the following section.

3. The initial symmetry-breaking bifurcation from V = VB (η, t)

In order to verify the calculations discussed above we carried out some runs over
the whole range of values of η thereby ignoring the symmetry which VB possesses.
We found that at low values of R the two calculations gave the same odd function
VB (η, t). However when the Reynolds number increases the symmetry is lost at a
critical value of R which we denote by Rs. A detailed discussion of that breakdown
is given later, but in order to set the scene we first plot in figure 2 the quantity

I(R) =

∫ π

0

V 2 (0, t) dt, (3.1)

for the case ∆ = 0.45 and a range of values of R.
It is clear that I = 0 when V = VB (η, t) because of the odd parity of the latter

function. We see that when R = Rs there is a bifurcation to a solution with I 6= 0.
This type of breakdown occurs at all values of ∆ for sufficiently high values of R.
We will discuss the dependence of Rs on ∆ later. In all cases, the flow bifurcating
from the solution V = VB was found to be no longer odd in η, but at the same time
remains synchronous with the wall motion. The solution which bifurcates at R = Rs
was found to be stable for a further range of values of R before itself breaking down
in a much more complicated manner.

Figure 3 shows Vηη (−1, t) for the case ∆ = 0.45, R = 48, a value just above the
symmetry-breaking bifurcation; we note that the bifurcating flow is again synchronous
with the wall motion. As mentioned above, calculations at other values of ∆ gave
the same kind of supercritical bifurcation to a flow synchronous with the forcing. We
stress again that this initial breakdown is always associated with a loss of symmetry
of the fluid motion about the η = 0 plane.

We also note the symmetry-breaking solution is not unique and a given non-
symmetric periodic solution may be used to generate another one by changing
η → −η and the sign of V . The question of which solution is attained numerically is
determined by the errors associated with the numerical scheme. Later we shall examine
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Figure 1. The wall shear VBηη(−1, t) for R = 0, 5, 25, and (a) ∆ = 0.25, (b) ∆ = 0.45,
(c) ∆ = 0.65.

in some detail the asymptotic small-amplitude structure of the symmetry-breaking
bifurcation at R = Rs.

At sufficiently small values of the Reynolds number R, the only solution of (2.4)
is the basic periodic state V = VB (η, t). Suppose that this solution is perturbed by
writing

V = VB + V̂ (η, t)

where |V̂ | � |VB |. The linearized differential equation satisfied by V̂ is found to be

V̂ηηt =LV̂ +
1

H
{VBV̂ηηη + V̂VBηηη − VBηV̂ηη − VBηηV̂η}. (3.2)
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Figure 2. The integral I defined by (2.12) for the case ∆ = 0.45.
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Figure 3. The function Vηη(−1, t) for the case ∆ = 0.45 and R = 48.

The perturbed stream function V̂ can be either odd or even about η = 0. We found
numerically that the most unstable perturbations are even about η = 0 and the
appropriate conditions on (3.2) are

V̂ = V̂η = 0, η = 1,

V̂η = V̂ηηη = 0, η = 0.

}
(3.3)

The coefficients in (3.2) are periodic in t with period π so that, on the basis of Floquet
theory, we expect that V̂ can be written in the form

V̂ = eµtV+ (η, t) , V+ (η, t+ π) = V+ (η, t) , (3.4)

where µ, the Floquet exponent, will in general be complex. Similar eigenvalue problems
have been solved by for example Hall (1978). In that paper a value of µ was found by
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Figure 4. The diamonds correspond to the boundary between stability and instability of the flow
VB . The lower curve corresponds to the small-∆ predictions of this boundary and the upper curve
corresponds to the onset of quasi-periodicity.

Fourier expanding the disturbance function corresponding to V+ thereby converting
the disturbance partial differential system into an infinite set of coupled ordinary
differential equations. The value of µ may then be found from the solution of a
truncated form of that set of equations. Here we shall use the efficient approach
utilizing the unsteady code rather than solving eigenvalue problems, and compute
the value of µ with the largest real part by a direct forward integration of the initial
value problem for V̂ . The drawback of this approach is that it identifies only the
most unstable mode; this, however, is sufficient for our purposes here.

We computed µ by integrating (3.2) subject to (3.3) and an appropriate (essentially
arbitrary) initial condition on V̂ . The equation was marched forward and µ estimated
by the comparison of the values of some flow quantity over time intervals of length π,
until a converged value was found. The number of periods over which it was necessary
to integrate the linearized equations to find µ was found to be dependent on ∆ and R
though in no case was it required to integrate over more than 50 periods. The value
of R at which µr = 0 is denoted by R = Rs and corresponds to the boundary between
the regions where VB (η, t) is stable and unstable to symmetry-breaking perturbations
respectively. In figure 4 the diamond symbols show Rs as a function of ∆. First,
we should point out that in addition to symmetry-breaking perturbations there exist
unstable modes with V̂ odd in η but these are stable until much higher values of R.
Also shown in figure 6 are two curves derived on the basis of the limit ∆→ 0, R →∞
analysed later. The lower of the two curves is an asymptotic approximation to the
boundary denoted by diamonds.

Figure 4 shows that at any value of ∆ the flow corresponding to VB (η, t) loses
symmetry about η = 0 when R > Rs (∆). The results suggest that there is a loss of
symmetry for ∆ → 0 with R → ∞; in fact the calculations suggest the distinguished
limit ∆ → 0, Rs = O (∆)−2 as the form of figure 4 when ∆ is small. We have plotted
results only for ∆ 6 0.85 since that is probably above the limit of the physical
relevance of our results considering that when ∆ = 1 the walls touch. Note also that
the Floquet exponent was found to be always real within the vicinity of the curve
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of figure 4. Following a comparison between figure 2 and figure 4 there seems little
doubt that the linearized instability discussed above is responsible for the bifurcations
found in the numerical solution of the full partial differential system. The fact that the
Floquet exponent of the linear theory is real is again consistent with the synchronous
nature of the bifurcation. Before further discussion of the breakdown which occurs
at even higher Reynolds numbers, we describe the form of the bifurcation at the first
breakdown Reynolds number Rs.

3.1. The small-amplitude solution in the neighbourhood of R = Rs

It is a routine multiple scale analysis to determine an evolution equation for the
amplitude of the symmetry-breaking disturbance. Therefore we will give only the
essential details of the expansion procedure here. We first write

R = Rs + ε2R̂ + · · · ,
with 0 < ε� 1 and define a small time scale T by

T = ε2t.

An asymptotic solution of (2.4) is then sought in the form

V = VB (η, t) + εA (T ) V̂ (η, t) + · · · .
Here V̂ is the neutral eigenfunction corresponding to µ = 0 at R = Rs whilst A (T ) is
the amplitude of the disturbance. The O

(
ε2
)

system is found to have a solution for

any A but, in the usual manner, the O(ε3) system requires an orthogonality condition
to be satisfied if it is to have a solution. This condition takes the form

dA

dT
= a1R̂A+ a2A

3, (3.5)

where a1 and a2 may be written down in terms of integrals involving the orders ε and
ε2 disturbance fields. In fact a1 > 0 since the flow is stable for R̂ < 0 and the sign of
a2 can only be found by evaluation of the integrals which define a1 and a2. The results
of figure 2 indicate that a2 < 0 so that (3.5) describes a supercritical bifurcation to a
finite-amplitude perturbation superimposed on the basic state V = VB (η, t) .

4. The subsequent development of the bifurcating periodic solutions
Here we shall discuss in some detail the results obtained at values of the Reynolds

number significantly beyond Rs. More details of the methods described below can be
found in numerous books and articles. We mention the book by Bergé, Pomeau &
Vidal (1984) and the review article by Eckmann & Ruelle (1985). For an application
of such methods to data extracted from an experimental investigation of a chemical
reaction, see, for example, Roux, Simoyi & Swinney (1983).

The field V (η, t) is known numerically at discrete points in space and time from
the numerical procedure described earlier. Physically −V + Ḣ is the dimensionless
vertical velocity at a given point, and given a fixed level η = η0 the time series
V0 (t) = V (η0, t) − Ḣ(t) can be constructed. This time series can be used to classify
the dynamics. For instance, if the forcing function is harmonic of the form

H (t) = 1 + ∆ cos (2t) , 0 < ∆ < 1,

and the dynamics locks onto the driving frequency, then V0 (t) is a periodic function of
period T = π. All maxima of V0 (t) are then equal and separated by a time π, the same
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being true for the minima. (Note that maxima/minima of V0 (t) can be thought of as
the Poincaré sections of the phase plane

(
V0, V

′
0

)
at the points where V ′0 = 0 and V ′′0

is less/greater than zero, respectively.) With V0 (t) known (the sampling is no smaller
than the numerical time step ∆t) the following are computed: (i) the critical points
(minima and maxima), (ii) the discrete Fourier transform giving the spectral energy
of the signal, (iii) the return maps of minima and/or maxima. The critical points
are estimated by following V0 (t) at the time intervals ∆t and performing a quadratic
polynomial fit, whenever the discrete function changes monotonicity, to estimate more
accurately both the value of a critical point and its position in time. Unless stated
otherwise, the signals used to produce the graphs in this paper are obtained from
V0(t) = V (−0.5, t) − Ḣ(t). Return maps are useful in characterizations of chaotic or
quasi-periodic attractors. Briefly, if the minima of V0 (t) are denoted by {mi}∞i=1, the
return map is the object in the plane obtained from the points (mi, mi+1)

∞
i=1. As an

example, given a series of iterates {mi}∞i=1 generated from the well-known logistic
map, the return map gives points lying on the parabola characteristic of the map.
In more complex dynamical systems like the partial differential equation studied
here, the return map can produce much more complicated objects including folding
and self-similarity (see later). (For related results from computational studies of the
Kuramoto–Sivashinsky and related systems see Papageorgiou & Smyrlis 1996; Smyrlis
& Papageorgiou 1991.)

In addition to the critical points of V0 (t) and their return map, we can also
project the infinite-dimensional dynamics onto three-dimensional trajectories. A three-
dimensional vector x (t) is constructed in one of two ways: (i) x1(t) = (V0(t − 2τ),
V0(t−τ), V0(t)), where τ > 0 is a given delay, and (ii) x2(t) = (V0(η1, t), V0(η2, t), V0(η3, t)),
where η1, η2, η3 are given points inside the channel. In the results to be presented here
we have taken η1 = −0.5, η2 = 0, η3 = 0.5. Useful diagnostics follow from Poincaré
sections of such trajectories with a given plane. (In the results presented here, the
Poincaré cross-sections are generated by the trajectory intersections with the plane
x3 = 0.) This diagnostic is particularly useful in evaluating quasi-periodic temporal
dynamics in conjunction with Fourier transforms. Equivalently phase planes in two
dimensions are obtained by constructing the vector x (t) = (V0 (t− τ) , V0 (t)). We
found in our simulations that the results can be classified essentially by the size of
the amplitude ∆. In the first instance we discuss results for sufficiently small values
of ∆; more precisely, sufficiently small corresponds to ∆ 6 0.45, approximately.

4.1. Results for relatively small ∆

In order to illustrate results typical of the small-∆ case we first present results for
∆ = 0.25. Here we find that the symmetric state breaks down to a synchronous
asymmetric flow when Rs ≈ 135.6. This synchronous flow remains stable until a
Reynolds number of about R = 544. The mode which destabilizes the synchronous
asymmetric flow has a complex-conjugate pair of eigenvalues crossing into the right
half-plane µr > 0, where µ again denotes the Floquet exponent. This change in flow
structure may be seen in figure 5 where we have shown the Poincaré cross-sections for
different values of R with ∆ = 0.25. When R < 544 the cross-section is a pair of points
corresponding to a periodic solution of single frequency. When R is increased a pair of
closed curves develops; the flow is then quasi-periodic with frequencies corresponding
to the driving frequency and the imaginary part of µ which exists when R passes
through 544 (see for example the results in figure 5(a, b) for R = 560, 600). When
R is increased further to R = 640 and 680 shown in figure 5(c, d), the flow remains
quasi-periodic with two frequencies even though the Poincaré cross-sections contain
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Figure 5. Poincaré cross-sections beginning at just above the onset of quasi-periodic flow for
∆ = 0.25 and R = 560, 600, 640, 680 (a–d).

more turns. Parts of the sections overlap and this is the case for the results in figure
6 also.

Figure 6 shows how the cross-sections develop at even higher values of R. At
a Reynolds number of 711 we see that the cross-sections appear to have become
connected and at a Reynolds number of 1600 two apparently self-similar structures
have developed; these structures are enlarged for the sake of clarity. The development
of self-similarity suggests that the flow is now chaotic. We note, however, that at
even higher values of R the self-similarity is no longer present. In figures 7(a) and
7(b) we show the velocity time plots and the corresponding frequency spectra for
∆ = 0.25, R = 711 and 1600. The dominant response has frequency 2 and is in
phase with the driving oscillations. The magnification shows the lower frequencies
which enter due to the initial quasi-periodic modulation and subsequent nonlinear
interactions. The spectrum at 1600 is not noticeably more ‘broad band’ than the other
so we do not have conclusive evidence of the presence of chaos at R = 1600. However
we shall be able to make further comments on the possible chaotic structure in this
regime in § 5 where the limit ∆ → 0 is considered. Here we merely state that the
results found in that section suggest that chaos is indeed present in this regime and
is associated with a period-doubling cascade on the second frequency. The value of
the smallest frequency present in the spectrum of figure 7(b) is about 0.024.

Figure 8 shows how the cross-sections develop at even higher values of R. It is
observed that there is no evidence of self-similarity and the flow is most probably
quasi-periodic. Our calculations suggest that for large R the second frequency scales
like R−1. The relevance, and importance, of this O

(
R−1

)
time scale for ∆ � 1 will

be made clear in the following section. In fact the presence of this longer time scale
enables a chaotic structure to develop as a modulation to the fast time variation
associated with the forcing from the wall.
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Figure 6. Poincaré cross-sections for ∆ = 0.25, R = 711, 1600 (a, b). The self-similar structures
which develop near A and B for R = 1600 have been enlarged in (c, d).

The results obtained above were found by integrating the full equations forward
in time from t = 0 until either an equilibrium state was reached or enough data
were available to determine the nature of the flow from, for example, Poincaré cross-
sections. In some cases we used data from a completed run at a given value of the
Reynolds number to begin a run at a neighbouring value of R. In all such cases we
found the dynamics of the flow after a sufficiently long time was indistinguishable
from that obtained by beginning the integration with zero flow. We shall see below
that this is not the case at larger values of ∆ where it appears that several attractors
can exist at a given R.

Results similar to those obtained above were found for other values of ∆ less
than 0.45; some of these results are described in figure 9. The first symmetry-
breaking bifurcation is indicated and the flow remains synchronous with the driving
frequency until the indicated quasi-periodic bifurcation. In the regimes where self-
similar structures are indicated in the figure we believe the flow to be chaotic. In all
of the small-∆ cases we were unable to determine from power spectra whether the
onset of chaos was caused by period doublings associated with the small frequency
leading to the quasi-periodic flow or by the appearance of a third frequency. The
difficulty in using the power spectra to settle this issue is apparent in figure 7 where
we see that the energy associated with the second frequency is much smaller than
that of the driving frequency.

4.2. Results for relatively large ∆

The results described next are typical of those obtained for values of ∆ bigger than
about 0.45. The largest value of ∆ studied extensively was 0.65; higher values of ∆
are probably of less physical interest, but some results are included in § 3.

We begin by describing results for the relatively large value of ∆ = 0.65. Solutions
begin by locking onto the driving frequency with V0 (t) being periodic of period T = π.
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Figure 7. The velocity time traces and corresponding frequency spectra of the time signal
V (−1/2, t)− Ḣ as the Reynolds number increases. ∆ = 0.25, and (a) R = 711, (b) R = 1600.

At a Reynolds number of approximately R = 60.39 = Rs2 a period doubling in V0 (t)
takes place and the period becomes T = 2π. The synchronous flow which exists for
R < 60.39 is symmetric about η = 0 for R < Rs = 43.77 where it loses stability
to the symmetry-breaking perturbations. Note that since the bifurcation which takes
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Figure 8. Poincaré cross-sections for ∆ = 0.25, R = 5000, 6000, 10 000 (a–c).

R subwindow Period T Subwindow length Length ratio

R 6 60.38 π 60.38 —

60.39 6 R 6 74.6 2π 14.21 4.25

74.605 6 R 6 78.46 4π 3.855 3.69

78.465 6 R 6 79.199 8π 0.734 5.25

79.2 6 R 6 79.3545 16π 0.1545 4.75

79.355 6 R 6 79.3865 32π 0.0315 4.91

79.387 6 R 6 79.394 64π 0.007 4.5

79.395 6 R 6 79.396 128π — —

Table 1. The Feigenbaum cascade for a relatively large value of ∆ = 0.65. A period doubling takes
place on the basic forcing period π.

place at R = Rs leads to a flow synchronous with the forcing, phase locking occurs
for 0 < R < Rs2. In addition, instead of a single maximum and single minimum the
signal contains two maxima and two minima after the period doubling. Solutions
remain 2π-periodic as the Reynolds number increases until a further period-doubling
bifurcation takes place at approximately R = 74.605, the solution now being periodic
with period T = 4π and the signal containing four maxima and four minima. It has
been established numerically that a period-doubling route to chaos is dictating the
dynamics according to the Feigenbaum scenario (see Feigenbaum 1979, 1980). These
results are summarized in table 1 which gives computed window boundaries which
support different periodic solutions. In addition the estimated lengths of computed
subwindows are also given, as well as the ratio of successive lengths as a period-
doubling cascade takes place.
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Figure 9. Schematic of the dynamics at relatively low values of ∆ as the Reynolds number increases.
Self-similar chaotic dynamics occur beyond the quasi-periodic bifurcation boundary as indicated.

All results in table 1 were computed with h = 1/500 and ∆t = 2π/25000. Periodicity
of solutions along with the period were found efficiently by inspection of the evolution
of the critical points of V0 (t). For instance for the 16π-periodic solutions the minima
(or maxima) evolve, after initial transients, to lie on 16 straight lines with successive
minima on each line separated by a time of 16π. We also note that the results shown
in table 1 were obtained by marching forward in time from zero initial flow. Identical
results are obtained by varying the Reynolds number slightly after equilibrium has
been achieved.

It can be seen from the computed values of successive window lengths that our
results are consistent with the Feigenbaum universal theory. The theoretical value is
4.6692016 . . ., and agreement is quite reasonable. Agreement can be improved by
refining subwindow boundaries, but given the computational expense required by this
(convergence to an attractor slows down near boundaries and long runs are required),
such an exercise is not pursued further here. There exists an accumulation point at a
Reynolds number R∞, say, which is approximately equal to 79.4 and beyond which
the dynamics are chaotic.

At higher values of R the dynamics are mostly chaotic. There are, however, small
windows supporting time-periodic solutions: for example solutions with periods 20π
at R = 80, 3π at R = 85, 6π at R = 86, with non-periodic motions in between were
obtained by marching forward in time from zero flow. Such behaviour is typical just
beyond a Feigenbaum route to chaos.

We consider next a value R = 100 where the dynamics are chaotic. The time series
V0 (t) is constructed by fixing η0 = −0.5. This is then used, with a delay τ = 500∆t,
to obtain the phase plane. The results are presented in figure 10. Both the signal
and its phase-plane suggest chaotic dynamics, but additional evidence is given by
the evolution of the critical points of V0 (t) together with their corresponding return
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Figure 10. The dynamics in the chaotic regime for ∆ = 0.65, R = 100.
(a) Velocity time trace, (b) phase plane.

maps, shown in figure 11. The irregular temporal evolution of the signal is clearly
seen in the evolution of the critical points; the return maps, however, show structures
in the plane which include foldings characteristic of chaotic dynamics. By analogy
with the Hénon map we can surmise that the dimension of such objects is expected
to be a number between 1 and 2.

The geometrical nature of the chaotic attractor including foldings is apparent also
in the results presented in figure 12, which shows Poincaré sections of the three-
dimensional trajectory x2 (t) (see above for the definition), with the plane x3 = 0.
Foldings are found and a clearer picture of these is presented by the three enlargements
in the neighbourhood of the points A, B and C.

Further calculations were carried out for ∆ = 0.6, 0.55, 0.5, 0.45. The results for the
three higher values of ∆ are similar so we describe in detail only the case ∆ = 0.6. We
again find that there is a chaotic attractor associated with a period-doubling route
from the basic driving period. In addition, however, there is a route to chaos from a
period-doubling cascade beginning with period 3π→ 6π→ 12π . . . . Table 2 indicates
the main milestones of the two routes. We see that the ‘3π’ attractor develops into a
chaotic flow whilst the ‘π’ attractor is locked onto a period-2π solution. Furthermore
the results shown in table 2 again give predictions for the Feigenbaum constant
consistent with the theoretical value. Also notice that the results of table 2 for the
period-‘π’ attractor were found by marching forward in time from an equilibrium state
at a nearby value of the Reynolds number since we found that marching forward
in time from zero initial flow invariably produced a solution corresponding to the
period-3π attractor for R greater than about 79.2. In order to see the origin of the
period-3π attractor we followed its evolution numerically as R was decreased. In these
calculations the initial data were taken to be those from a previous converged run.
We found that the attractor could not be followed below a Reynolds number of about
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Figure 11. The evolution of (a) the minima and (b) maxima of the velocity signal at η = − 1
2
,

together with the corresponding return maps (c, d) in the chaotic regime for ∆ = 0.65, R = 100.

R subwindow Period T Subwindow length Length ratio

R 6 71.0 π 71.0 —

71.5 > R 6 85.09875 2π 13.59875 5.22

85.099 > R 6 87.6775 4π 2.5785 5.28

87.6778 > R 6 87.977 8π 0.2992 8.62

79.196 6 R 6 80.736875 3π — —

80.737 6 R 6 81.3449375 6π 0.6079375 —

81.345 6 R 6 81.476875 12π 0.131875 4.61

81.477 6 R 6 81.50546875 24π 0.02846875 4.63

81.505625 6 R 6 81.5116125 48π 0.0059875 4.76

81.511625 6 R 6 81.51275 96π 0.001125 5.32

R = 81.513 192π — —

Table 2. Computed periodic solutions for ∆ = 0.45. Period doublings are found starting from π
and 3π periodic solutions with the two attractors partly co-existing. The results indicate that the
Feigenbaum scenario is at play.

79.196, below which the period-2π solution was obtained. This value of R denotes a
limit point and a linear stability of the 3π-solutions as R decreases yields an eigenvalue
passing through zero, confirming this structure. The two cascades are shown in figures
13(a) and 13(b). The figures show the minima of the signal V0(t) = V (−0.5, t)−Ḣ after
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transients have died out, starting from R = 0. Figure 13(a) includes the continuation
of the unstable symmetric branch beyond the symmetry-breaking bifurcation. The
cascade on the 3π basic periodic solution is shown in figure 13(b). As R decreases
below about 79.196, the 3π-solutions disappear: this point is a limit point with stable
and unstable 3π-branches co-existing above this point. The unstable branches are not
shown in the figure since they are not obtainable by the present numerical methods.
(As mentioned earlier this has been confirmed by a linear stability of the solutions as
R decreases towards the limit point.) As R increases a Feigenbaum period-doubling
cascade occurs; this, as well as the period-doubling cascade on the 2π-solutions, are
summarized in table 2. We also note that, if symmetry is maintained in the problem,
the symmetric branch remains π-periodic until approximately R = 250 when the first
period-doubling takes place.

Clearly it is possible for other attractors to exist which were not accessible from a
zero initial flow marching calculation. However, in the ranges of Reynolds number
investigated, that is 0–99, apart from the π, 3π attractors the most attracting solution
set found by marching from zero initial flow was a period 11π solution at R = 87.9.
This attractor also has a period-doubling sequence and perhaps occurs initially as
a periodic state emerging from the remnants of the chaotic form of the period-3π
attractor.

4.3. Results for ∆ = 0.45

This is perhaps the most interesting case and the results we obtained have some
similarities with both the ∆ = 0.25 and ∆ = 0.65 cases. As in the ∆ = 0.25 case, the
symmetric synchronous mode which bifurcates supercritically at R = Rs loses stability
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as a result of a Hopf bifurcation to a quasi-periodic flow. Figure 14 shows some of
the flow properties. The Poincaré cross-section at R = 136.23 again has two closed
curves typical of the quasi-periodic flows found here. The two frequencies present
in the flow are again associated with the driving motion of the wall and the Hopf
bifurcation.

However when R is increased further the smaller of the two frequencies approaches
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of the driving frequency and the flow then locks onto a period-4π solution (i.e. time
periodic with period 4π) at approximately the value R = 136.24. In our computations
based on solutions of the initial value problem starting with a zero initial velocity
field, we find that when R increases beyond about R = 143.9 instead of locking
directly onto a period-4π solution the flow stays chaotic for a considerable interval
of time. Figure 15 shows how the interval over which the flow is chaotic increases
when R increases. We conclude that for a value of R not too far beyond R = 143.93
the large time solution of the initial value problem addressed here is attracted to
a chaotic solution. Figure 16 shows additional results for R = 143.93: the return
map of the minima of V0(t) is depicted, clearly showing the transient chaotic state
and the manner in which the period-4π solution emerges from the chaotic attractor.
The numbers on the figure show the four points comprising the return map which
correspond to the period-4π solution.

It can be concluded, therefore, that the period-4π solution becomes unstable (at
least within the frame of the initial value problem considered in most of this study)
and is replaced by a chaotic attractor. We note that such large time behaviour is
consistent with physical situations where an experiment would begin with the plate
oscillating and the fluid being stagnant at t = 0. It is interesting, however, to follow
the period-4π solutions by choosing appropriate initial conditions and by taking
small increments in the Reynolds number. This enables continuation of the period-4π
branch to values of R that would otherwise produce chaotic dynamics. This process
was successful for a range of Reynolds numbers and the results are shown in figure
17. We note that for values of the Reynolds number beyond about 148, the increment
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in the Reynolds number had to be very small and the computations became very
costly. Larger steps in Reynolds number were made possible by computing with a
Reynolds number of, for example, R = R0 + δR(tanh(αt)), where R0 is the Reynolds
number at which the solution is already known and has converged to a period-4π
solution, δR is the increment, and α is a parameter which is usually less than unity;
the time-dependence ensures a smoother transition than the usual jump in R by δR.
The solutions beyond R = 148.9 failed to converge to period-4π solutions and instead
locked onto chaotic attractors. In addition, there are other periodic solutions present
beyond R = 149 such as period-6 solutions. As can be seen from the figure, the
lower two branches get very close together at about R = 146.2 before opening up
again. Note that it is not possible to go from a period-4π solution to a period-3π one
smoothly.

The coexistence of chaotic and periodic attractors and the fact that the chaotic
ones are more strongly attracting poses considerable difficulty in the construction of
weakly attracting periodic solutions. An illustration of the chaotic attractor obtained
at R = 148.75 is shown in figure 18. Note that a period-4π solution coexists at this
value of R as shown in figure 17. The chaotic dynamics depicted in the Poincaré
section in figure 18 contain a striking self-similarity. This is clearly shown in the
enlargement included in the figure of the small island just below the main highly
folded island. As noted previously, by analogy with the Hénon map the dimension of
the total object is expected to be a number between 1 and 2.

5. A simplified structure valid in the limit R →∞, ∆ = O(R−1/2)

The results obtained in the last section suggest that for ∆ → 0 there might be an
asymptotic structure emerging in the high Reynolds number limit. We shall show
next that the results found previously for the smaller values of ∆ are in fact in close
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agreement with a simplified asymptotic model of the full problem in which R → ∞
with R1/2∆ held fixed.

First it is convenient for us to transform (2.4) to a more suitable form by writing

V = −ηḢ +H3ψ (η, t) , (5.1)

so that ψ is now determined by the partial differential system

ψηηt =
1

RH2
ψηηηη +H2

{
ψψ

ηηη
− ψηψηη

}
, (5.2)

ψ = 0, η = ±1, ψη =
Ḣ

H3
, η = ±1.

Notice that (5.2) shows that ψ depends on H only through H2 and that a basic
antisymmetric solution of the system is possible. We shall follow the notation of § 3
and refer to this solution as ψ = ψB (η, t) since this is the unique stable solution for R
sufficiently small. In fact, Secomb (1978) discussed the steady streaming problem in
the small-amplitude limit; therefore we shall give here only the essential details of the
calculation and refer the reader to that paper. The major difference in our analysis
is that we allow the streaming flow to evolve on a long time scale and impose no
symmetry on the flow. It is of course essential to allow for this time dependence if we
are to determine the cause of the chaos discussed in the previous section.

In the limit of large R, the dominant balance of the linear terms in (5.2) has
∂3/∂η2∂t ∼ ∂4/R∂η4 if ∂/∂η ∼ O(R1/2) so that boundary layers of thickness R−1/2

must exist at the upper and lower walls. Thus for example near the upper wall η = 1
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we define the variable ζ by writing

ζ = R1/2 {1− η} . (5.3)

The nonlinear terms in the partial differential equation to determine ψ in the wall layer
are then comparable with the linear terms if ψ ∼ O

(
R−1/2

)
. This is the appropriate

wall layer structure for the limit R → ∞, ∆ = O (1). Here we have made the further
assumption that ∆ = O

(
R−1/2

)
; this reduces ψ to being of order R−1 in the wall layer

so the required expansion is

ψ =
1

R
ψ0 (ζ, t) +

1

R3/2
ψ1 (ζ, t) +

1

R3/2
ψM (ζ) + O

(
1/R2

)
. (5.4)

We write

∆ =
d

R1/2
, (5.5)

and ψ0 is then found from the leading-order approximation to (5.2) in the upper wall
layer. We obtain

ψ0 =
id

1 + i
{e−ζ(1+i) − 1}e2it + c.c., (5.6)

where c.c. denotes complex conjugate. We note that we have split the order-R−3/2

terms into a time-periodic part, ψ1, and ψM which is essentially a steady streaming
flow induced by the Reynolds stresses in the upper layer. We find that

ψM

d2
=

[
1 + i

2
e−ζ(1+i) +

1 + i

4
e−ζ(1−i)

]
+ c.c.+

e−2ζ

4
+
Nζ +M

d2
,

and to satisfy no slip at ζ = 0 we have that

N = 3
2
d2,

so that for large ζ, ψM ∼ 3
2
d2 (ζ).

This means that the mean part of the flow in (5.4) becomes comparable with the
leading-order unsteady form at the edge of the boundary layer, i.e. when ζ = O

(
R1/2

)
.

Hence, in the core region −1 < η < 1, we expand ψ in the form

ψ =
1

R
ψ0 (η, t) +

1

R
φ (η) + O

(
1

R3/2

)
. (5.7)

The leading-order approximation to the equations governing the time-periodic flow
(with mean zero) in the core then yields

ψ0 = A (t) η + B (t) ,

where A and B are found by matching with the wall layers but are in fact not needed
here. It is convenient to allow for a slow modulational time scale in the core so we
write

τ =
1

R
t,

and allow φ in (5.7) to depend on η and τ. We find that φ satisfies

φηητ = φηηηη + φφηηη − φηφηη. (5.8)

In the terminology of steady streaming problems, see for example Stuart (1966), we
have chosen scalings such that the outer steady streaming layer entirely fills the
channel. From the form of ψ in the wall layer when ζ → ∞, and a similar analysis
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near ζ = −1, we can show that the boundary conditions to be imposed on φ take the
form

φ = 0, η = ±1,
φη = − 3

2
d2, η = ±1.

}
(5.9)

Thus (5.8) and (5.9) constitute a self-contained steady-streaming problem for φ driven
by the Reynolds stresses in the wall layers. In fact by making the transformation

φ→ 3
2
d2φ̂, τ =

(
3
2
d2
)−1

τ̂ we may write the problem for φ̂ as

φ̂ηητ̂ =
1

Rs
φ̂ηηηη + φ̂φ̂ηηη − φ̂ηφ̂ηη, φ̂ = 0, φ̂η = −1, η = ±1. (5.10)

Here Rs = 3
2
d2 is to be interpreted as a steady-streaming Reynolds number, see Stuart

(1966). Thus the problem for φ̂ is essentially the same as the original forced problem
for V except that now the forcing from the walls is purely steady. The system (5.10)
does of course allow a solution which is odd about the centre of the channel. An
investigation of the steady symmetric problem was made by Secomb whilst Brady &
Acrivos (1981) discussed the same problem but with the streaming Reynolds number
negative. Such flows are relevant to motions induced by bubbles. After this paper
was submitted we became aware of an investigation of (5.10) by Watson et al. (1990).
(Note, however, that because of the slightly different formulations used the streaming
Reynolds number is the negative of the Reynolds number of their paper.) In fact
the results we obtained are in good agreement with Watson et al. Since our results
were obtained with the code used to determine the results of the previous section, we
therefore have an independent check on our numerical work.

Now let us discuss the properties of (5.8) and (5.9) and show how the dynamics for
φ explain some of the numerical results obtained for ∆ = 0.25. The first point to note
is that (5.8) and (5.9) can support a solution with φ = φB (η) an odd function of η
and independent of time. This solution is the appropriate asymptotic approximation
to the mean part of ψB (η, t). In fact for small values of d it can be seen from (5.8)
and (5.9) that φ takes the form

φB = 3
4
d2
{
η − η3

}
+ O

(
d4
)
. (5.11)

At order-one values of d the solution must be calculated numerically. The linear
stability of this flow may be found by perturbing about the steady state and marching
the linearized form of (5.8) and (5.9) forward in time until the instantaneous growth
rate equilibrates. Such a calculation shows that φB loses stability to a single mode
with purely real eigenvalue and having even symmetry about η = 0. This occurs when
d = 3.39 so that for small ∆, large R we predict the form of figure 4 for ∆� 1 to be

R =
(3.39)2

∆2
+ · · · .

This asymptotic prediction is shown in figure 4 and we see that it is consistent with
the ∆ = O (1) calculation for small ∆. The corresponding value d from Watson et al.
is 3.40.

The linear stability of the steady symmetry-breaking solutions may be checked by
a similar linear stability calculation. We find that when d = 5.99 (compared to 6.09
from Watson et al.) a complex conjugate pair of eigenvalues move into the right
half-plane so that a Hopf bifurcation to a periodic state occurs at this value of d.
Note again that this flow is periodic on an O (R) time scale quite different from that
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R subwindow Period T Subwindow length Length ratio

d < 5.99(6.09) steady 5.19 —

5.99 < d < 7.0245(7.0237) period P ' 31.1 1.1245 —

7.0245 < d < 7.1980(7.2018) period 2P 0.1745 8.2

7.1980 < d < 7.2301(7.2341) period 4P 0.321 5.4

7.2301 < d < 7.2368 period 8P 0.0067 4.79

Table 3. The period-doubling cascade for the asymptotic problem ∆ → 0, R → ∞ with ∆R1/2 = d.
The period-doubling cascade found corresponds to a period-doubling of the relatively small second
quasi-periodic frequency which enters as Re increases for small ∆.

of the wall forcing so that the total flow is quasi-periodic. Thus for small ∆ our
calculations predict the onset of quasi-periodicity when

R =
(5.99)2

∆2
+ · · · , (5.12)

and again this prediction is shown in figure 4. The numerical calculations for ∆ = 0.25
showed that quasi-periodicity began when R ' 544 whereas (5.12) gives R ' 574, in
reasonably good agreement with the calculations.

If d is increased beyond d = 5.99 we observe a Feigenbaum period-doubling cascade
to chaos. The results are shown in table 3. The corresponding figures given in Watson
et al. are shown in brackets.

Note that Watson et al. say their results are unlikely to be correct to 3 significant
figures so the agreement shown is as good as could be expected. We saw above that
the streaming flow represented by φ becomes chaotic through the Feigenbaum route.
At higher values of d our calculations always produced chaotic flows though it should
be said that we did not carry out exhaustive searches for laminar subwindows. The
value of the Feigenbaum constant predicted by our calculation is again close to the
theoretical value. Poincaré cross-sections for runs at values of d > 7.4 show self-
similar structures typical of chaotic flows. In the previous section we were reluctant
to associate such structures with chaos but perhaps the results found in this section
for the case ∆ � 1, R � 1 shed some light on that matter. By this we mean that
the results for the case ∆ = 0.25 having a self-similar structure is a consequence of
a period-doubling cascade on the second frequency which appears after the initial
Hopf bifurcation. Thus we tentatively conclude that chaos occurs at all values of ∆
at sufficiently large values of the Reynolds number. At moderate values of ∆ this is
a result of a period-doubling cascade associated with the period-of external forcing,
and at lower values of ∆ the cascade is associated instead with the modulational
period. The difficulty in identifying conclusively a period-doubling cascade on the
second frequency for finite but small ∆ is that there, most of the energy is associated
with the fast time scale, making it difficult to see a period-doubling cascade on the
second frequency.

It is interesting to note that (5.8) and (5.9) with the sign changed on the boundary
condition has a somewhat different structure when the forcing is increased. Note
however that this situation does not apply to the internal steady streaming problem
discussed here but is relevant to external steady streaming problems where the sign
of the forcing is typically opposite to that found here; see Stuart (1966). In this case
it turns out that there is once again a loss of symmetry at a finite forcing amplitude
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followed by a Hopf bifurcation to a finite-amplitude periodic state. However a period-
doubling cascade appears to be absent in this case though Watson et al. suggest that
eventually the flow becomes chaotic. Calculations with our code suggested that in
this case shock-like structures appear in the velocity time traces as the amplitude of
the forcing increases.

Finally in this section we make some remarks about the finite-∆, large-R limit. The
calculations which we carried out and reported on in the last section all suggested
that at sufficiently large values of the Reynolds number we should expect chaotic
flows with laminar subwindows. When the Reynolds number is large, then, viscous
boundary layers develop at the walls together with an inviscid core coupled to the
motion in the nonlinear boundary layers. Unless the further limit of small ∆ is taken
little or no analytical progress can be made with the solution of the wall layer
problems; therefore there is little simplification which can be made in the large-R,
finite-∆ limit.

6. Conclusions
The present investigation began as an attempt to extend the instability analysis

of Stuart et al. (1990) for squeeze bearing flows into the practically more relevant
situation when the flow in the bearing is driven by the vibration of one of the
walls. We found instead that time-periodic flows in squeeze bearings are unstable to
perturbations having the same spatial structure as the basic state in the horizontal
directions. Stuart et al. had investigated the possible instability to Tollmien–Schlichting
waves of squeeze bearing flows but, on the basis of our knowledge of the instability
of steady stagnation-point flows, see for example Hämmerlin (1956) and Dhanak &
Stuart (1995), it might well be that vortex disturbances may be important also. We
point out that the instabilities and chaotic flows which we have found may in practice
be preceded by vortex or wave disturbances.

We found that for all values of the oscillation amplitude ∆ the basic state which is
known to be stable in the small Reynolds number limit loses stability at a finite value
of R to a synchronous symmetry-breaking perturbation. The flow which develops
beyond the first bifurcation point subsequently loses stability at a higher value of
the Reynolds number to a disturbance which is no longer synchronous with the
wall motion. At sufficiently large values of ∆ the flow undergoes a period-doubling
bifurcation following the well-known Feigenbaum scenario for the onset of chaos. At
higher values of R the flow possesses laminar subwindows with rather unpredictable
periods.

At sufficiently low values of ∆, after the second bifurcation the flow becomes quasi-
periodic with the new frequency relatively small compared to the driving frequency.
The motion beyond the second bifurcation sets in as a result of a Hopf bifurcation.
Our calculations for the case ∆ = 0.25 suggest that chaos occurs at higher values
of R. This was primarily suggested by the self-similar structures typical of chaotic
flows which were found to exist in some of the Poincaré cross-sections. However,
the presence of chaos was not immediately apparent in the frequency spectra which
we calculated. The reason why this was the case was revealed by our asymptotic
investigation of the small-∆, large-R limit. Here we found that the flow essentially
develops on two time scales, first the O(1) time scale associated with the forcing and
secondly a modulational time scale of size O(R). On the longer time scale chaos
occurs again as a result of a period-doubling cascade. We conjecture that this is also
happening in the numerical simulations which we carried out for ∆ = 0.25 but the
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detail of the breakdown is simply obscured by the much larger amplitude motion on
the O(1) time scale.

At the intermediate value of ∆ = 0.45 we found that the flow development had sim-
ilarities with both the small- and large-∆ cases.The second bifurcation here was found
to lead to a quasi-periodic flow in a similar manner to what was found for the ∆ = 0.25
case. However when the Reynolds number was increased further we found that the
second frequency locked onto a value of 1

4
of the driving frequency and a period-4π so-

lution was established. However subsequent changes in R showed a development which
was much harder to follow than was the case for the large-∆ simulations though we be-
lieve the cases to be essentially the same. For the ∆ = 0.45 case we found that after the
period-4π solution was established the flow at higher values of R would stay chaotic
for a successively increasing interval before reverting back to a period-4π solution. The
chaotic attractor coexisting with period-4π solutions is more strongly attracting, and
continuation methods were used to partially map out the subsequent development of
the period-4π solution branches. Beyond certain Reynolds numbers, our continuation
methods failed to converge to periodic solutions and converged to self-similar chaotic
attractors instead. We believe that at higher values of R the flow will remain chaotic
for all time and that again the chaos is associated with a period-doubling cascade.
However, the nearness of the chaotic attractor to the period-4π solutions in phase
space appears to make it impossible for us to map out this development.

Finally let us make some comments on the practical relevance of our analysis.
We recall, see for example Secomb (1978), that the stagnation-point flow we have
considered applies to the situation when a pressure gradient drives a flow in the
x-direction. Thus our analysis gives an approximation for the size of wall vibrations
which could cause loss of symmetry and ultimately chaotic flows in for example plane
Poiseuille flow. In fact, if B denotes the physical wall amplitude of oscillation then
our small-amplitude theory predicts loss of symmetry when

B =
3.39ν1/2

n1/2
+ · · · .

Considering Poiseuille flow of water, for example, at a temperature of 20 ◦C (the

kinematic viscosity being ν = 0.01 cm2 s
−1

), then wall vibrations of 1000 Hz, 100 Hz
and 10 Hz respectively, require wall amplitudes of only about 0.06 mm, 0.2 mm and
0.6 mm to cause loss of symmetry and amplitudes of about 0.13 mm, 0.44 mm and
1.3 mm respectively to cause the onset of chaos. Using data from Secomb (1978),

a fluid viscosity of 0.0346 cm2 s
−1

and a frequency of vibration of 10 Hz, requires
oscillation amplitudes of approximately 1.1 mm for loss of symmetry and 2.5 mm for
onset of chaos. Typical vessel diameters used by Secomb are of the order of 12 mm or
larger. (Note that we are applying the two-dimensional theory, but the axisymmetric
geometries are expected to give analogous results.)

In the context of lubrication squeeze bearings, a similar estimate can be made for
lubricating oils at bearing operating temperatures which can typically be of the order
of 100 ◦C (see Hamrock 1991, for viscosity values of a range of lubricating oils).
Using a 1000 Hz frequency of wall vibrations and a typical parafin base oil at 60 ◦C,
100 ◦C and 150 ◦C respectively, gives amplitudes of 0.23 mm, 0.14 mm and 0.09 mm
respectively for loss of symmetry, and, 0.5 mm, 0.3 mm and 0.19 mm respectively for
the onset of chaos. Similar results are found for other oils such as napthenic base oils
or unused engine oils. We note that the estimated amplitudes are relatively small due
to the decrease of viscosity with temperature.
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